GUAIANOLIDES FROM ACROPTILON REPENS*

ABDOLHOSSEIN RUSTAIYANT, LILLY NAZARIANST and FERDINAND BOHLMANNT

† Department of Chemistry, National University of Iran, Teheran, Iran; ‡ Institute for Organic Chemistry, Technical University
Berlin, D-1000 Berlin 12, West Germany

(Received 22 August 1980)

Key Word Index—Acroptilon repens; Compositae; Cynareae; sesquiterpene lactones; guaianolides.

Abstract -- Two new guaianolides have been isolated from the aerial parts of Acroptilon repens.

The aerial part of A. repens DC (Centaurea picris) has been investigated several times [1]. Two guaianolides were isolated, chlorohyssopifolin C (1) [1] and repin (2) [2]. A reinvestigation afforded, in addition to these lactones, janerin (3) [3], chlorohyssopifolin A (4) [4] and two other lactones, which are the closely related guaianolides 5 and 7. The structures followed from the ¹H NMR data (Table 1), especially if compared with those of 2-4. Acetylation of 5 gave the diacetate 6, its ¹H NMR data (Table 1) showed that the stereochemistry at C-5 through C-8 was the same as that of 1-4, while the presence of a C-4 methylene group was indicated by two broadened signals at δ 5.68 and 5.43 in the spectrum of 5. Spin decoupling showed that the two hydroxyls were at C-2 and C-3. However, the stereochemistry could not be assigned with certainty. Inspection of models showed that

the observed coupling $J_{2,3}$ would be in agreement with cisand trans positioned hydroxyls. The large coupling $J_{1,2}$ may be an indication of a 2α -hydroxy group. The ¹H NMR data of 7 again showed identical stereochemistry at C-5 through C-8, while the orientation of the hydroxyls at C-3 and C-4 again could not be determined with certainty. The downfield shift of the H-6 signal may indicate a 4β hydroxyl. The presence of a hydroxymethacrylate followed from the ¹H NMR data. Due to the small amounts of material no further transformations were possible. We have named compound 7 acrorepiolide. Obviously all guaianolides present in this plant are closely related. Probably 8α-methacryloyloxydehydrocostuslactone is the common precursor. The different stereochemistry at C-3 and C-4 reported for 1-4, however, is surprising.

HO

^{*}Part 329 in the series "Naturally Occurring Terpene Derivatives". For Part 328 see Bohlmann, F., Müller, L., King, R. M. and Robinson, H. (1981) *Phytochemistry* 20, 1149.

Table 1. ¹H NMR spectral data of compounds 2-7 (TMS as int. stand., CDCl₃)

	2	3	4	5	6	7
H-1	3.33 ddd	3.37 ddd	3.44 ddd	2.81 dd	3.01 m	3.34 ddd
Η-2α	1.83 ddd	1.83 ddd	1.64 ddd \	200 11	5 2 2 1 1	1.73 ddd
$H-2\beta$	2.47 ddd	2.47 ddd	2.48 ddd }	3.80 dd	5.37 dd	2.79 ddd
H-3	3.95 dd	3.98 dd	4.16 dd	4.32 brd	5.66 d	4.19 dd
H-5	2.07 dd	2.08 dd	2.31 dd	3.01 brdd	3.01 m	2.01 dd
H-6	4.60 dd	4.65 dd	4.66 dd	4.22 dd	4.25 dd	4.59 dd
H-7	3.05 dddd	3.12 dddd	3.15 dddd	3.21 dddd	3.18 dddd	3.18 dddd
H-8	5.03 ddd	5.18 ddd	5.20 ddd	5.12 ddd	5.15 ddd	5.10 dd
Η-9α	2.38 dd	2.44 dd	2.40 dd \	2.50 brs	2.47 dd	2.34 dd
Η-9β	2.78 dd	2.78 dd	2.75 dd }		2.73 dd	2.79 dd
H-13	6.24 d	6.21 d	6.24 d	6.23 d	6.24 d	6.24 d
H-13′	5.73 d	5.61 d	5.63 d	5.62 d	5.63 d	5.67 d
H-14	5.19 brs	5.20 brs	5.17 brs	5.22 brs	5.14 brs	5.17 brs
H-14'	4.94 brs	4.97 brs	5.07 brs	5.03 brs	4.97 brs	4.96 brs
H-15	3.32 d	3.34 d	3.87 d	5.68 brs	5.63 brs	4.40
H-15'	3.05 d	3.07 d	3.64 d	5.43 brs	5.33 brs }	1.42 s
OCOR	3.17 d	6.34 brs	4.02 d	6.20 brs	6.13 brs	6.34 brs
	2.82 d	5.96 brs	3.98 d	5.69 brs	5.68 brs	5.97 brs
	1.61 s	4.39 brs	1.55 s	2.00 brs	2.00 brs	4.39 brs
OAc	_	_		_	2.13 s	
					2.02 s	

J (Hz): Compounds 2/3: $1,2\alpha=7$; $1,2\beta=10$; 1,5=8; $2\alpha,2\beta=15$; $2\alpha,3=7$; $2\beta,3=4$; 5,6=11; 6,7=9; 7,8=9; 7,13=3.5; 7,13'=3; $8,9\alpha=3.5$; $8,9\beta=5$; $9\alpha,9\beta=15$; 15,15'=4; 4',4'=5; compound 4: $1,2\alpha=9$; $1,2\beta=10$; 1,5=9; $2\alpha,2\beta=14$; $2\alpha,3=6$; $2\beta,3=3$; 5,6=11; 6,7=9; 7,8=9; 7,13=3.5; 7,13'=3; $8,9\alpha=3.5$; $8,9\beta=5$; $9\alpha,9\beta=15$; 15,15'=11; 4',4'=12; compounds 5/6: $1,2\alpha=10$; 1,5=10; 2,3=7.5; 5,6=10; 6,7=9; 7,8=9; 7,13=3.5; 7,13'=3; $8,9\alpha=3$; $8,9\beta=5$; $9\alpha,9\beta=15$; compound $7:1,2\alpha=7$; $1,2\beta=10$; 1,5=8; $2\alpha,2\beta=15$; $2\alpha,3=7$; $2\beta,3=4$; 5,6=11; 6,7=9; 7,8=9; 7,13=3.5; 7,13'=3; $8,9\alpha=3$; $8,9\beta=5$; $2\alpha,9\beta=15$.

EXPERIMENTAL

The air dried aerial parts of Acroptilon repens (500 g) were collected north of Teheran and extracted with Et₂O. The resulting extract after removal of saturated hydrocarbons by treatment with MeOH was first separated by CC (Si gel) and further by repeated TLC (Si gel). With Et₂O-MeOH (20:1) 1-5 and 7 were eluted. Finally 120 mg 1, 180 mg 2, 30 mg 3, 25 mg 4, 25 mg 5 and 10 mg 7 were isolated. Compounds 1-4 had the same data as those reported in the lit. Their structures followed from the ¹H NMR data.

2,3-Dihydroxy-8α-methacryloyloxydehydrocostuslactone (5). Colourless gum, IR $v_{max}^{\rm CHCl_3}$ cm⁻¹: 3580 (OH), 1770 (γ-lactone), 1720 (C=CCO₂R); MS m/z (rel. int.): 346.143 (M⁺, 8) (C₁₉H₂₂O₆), 328 (M - H₂O, 0.5), 260 (M - RCO₂H, 5), 242 (260 - H₂O, 9), 224 (242 - H₂O, 2), 69 (C₃H₅CO⁺, 100). Compound 5 (10 mg) was heated for 4 hr with Ac₂O at 70°. TLC (Et₂O) afforded 10 mg 6, colourless gum, IR $v_{max}^{\rm CCl_4}$ cm⁻¹: 1780 (γ-lactone), 1750 (OAc), 1715 (C=CCO₂R); MS m/z (rel. int.): 370 (M - AcOH, 2), 328 (370 - ketene, 22), 242 (328 - RCO₂H, 28), 69 (C₃H₅CO⁺, 100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+28} \frac{578}{+32} \frac{546}{+35} \frac{436 \text{ nm}}{+59} (c = 1.0, \text{ CHCl}_3).$$

Acrorepiolide (7). Colourless gum, IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 3600 (OH), 1770 (γ-lactone), 1715 (C=CCO₂R); MS m/z (rel. int.): 364 (M $^+$, 0.5), 349.129 (M $^-$ Me, 16) (C₁₈H₂₁O₇), 332.126 (349 $^-$ OH, 12) (C₁₈H₂₀O₆), 265 (349 $^-$ C₄H₄O₂, 38), 85 (RCO $^+$, 100).

$$[\alpha]_{24^{\circ}}^{2} = \frac{589}{+16} \frac{578}{+19} \frac{546}{+25} \frac{436 \text{ nm}}{+29} (c = 1.0, \text{ CHCl}_{3}).$$

Acknowledgement—A.R. thanks the Ministry of Culture and Higher Education of Iran for financial support.

REFERENCES

- Evstratova, R. I., Sheichenko, V. I. and Rybalko, K. S. (1973) Khim. Prir. Soedin 9, 161.
- Evstratova, R. I., Rybalko, K. S. and Rzazade, R. Y. (1967) Khim. Prir. Soedin 3, 384.
- Gonzales, G. A. J., Bermejo Barrera, J., Cabrera, I. and Massanet, G. M. (1977) An. Quim. 73, 86.
- Gonzales, G. A. J., Bermejo Barrera, J., Breton Funes, J. L. and Triana, J. (1972) Tetrahedron Letters 2017.